Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: In 2020, 32.6% of the world's population used tobacco. Smoking contributes to many illnesses that require hospitalisation. A hospital admission may prompt a quit attempt. Initiating smoking cessation treatment, such as pharmacotherapy and/or counselling, in hospitals may be an effective preventive health strategy. Pharmacotherapies work to reduce withdrawal/craving and counselling provides behavioural skills for quitting smoking. This review updates the evidence on interventions for smoking cessation in hospitalised patients, to understand the most effective smoking cessation treatment methods for hospitalised smokers. Objectives: To assess the effects of any type of smoking cessation programme for patients admitted to an acute care hospital. Search methods: We used standard, extensive Cochrane search methods. The latest search date was 7 September 2022. Selection criteria: We included randomised and quasi-randomised studies of behavioural, pharmacological or multicomponent interventions to help patients admitted to hospital quit. Interventions had to start in the hospital (including at discharge), and people had to have smoked within the last month. We excluded studies in psychiatric, substance and rehabilitation centres, as well as studies that did not measure abstinence at six months or longer. Data collection and analysis: We used standard Cochrane methods. Our primary outcome was abstinence from smoking assessed at least six months after discharge or the start of the intervention. We used the most rigorous definition of abstinence, preferring biochemically-validated rates where reported. We used GRADE to assess the certainty of the evidence. Main results: We included 82 studies (74 RCTs) that included 42,273 participants in the review (71 studies, 37,237 participants included in the meta-analyses); 36 studies are new to this update. We rated 10 studies as being at low risk of bias overall (low risk in all domains assessed), 48 at high risk of bias overall (high risk in at least one domain), and the remaining 24 at unclear risk. Cessation counselling versus no counselling, grouped by intensity of intervention. Hospitalised patients who received smoking cessation counselling that began in the hospital and continued for more than a month after discharge had higher quit rates than patients who received no counselling in the hospital or following hospitalisation (risk ratio (RR) 1.36, 95% confidence interval (CI) 1.24 to 1.49; 28 studies, 8234 participants; high-certainty evidence). In absolute terms, this might account for an additional 76 quitters in every 1000 participants (95% CI 51 to 103). The evidence was uncertain (very low-certainty) about the effects of counselling interventions of less intensity or shorter duration (in-hospital only counselling ≤ 15 minutes: RR 1.52, 95% CI 0.80 to 2.89; 2 studies, 1417 participants; and in-hospital contact plus follow-up counselling support for ≤ 1 month: RR 1.04, 95% CI 0.90 to 1.20; 7 studies, 4627 participants) versus no counselling. There was moderate-certainty evidence, limited by imprecision, that smoking cessation counselling for at least 15 minutes in the hospital without post-discharge support led to higher quit rates than no counselling in the hospital (RR 1.27, 95% CI 1.02 to 1.58; 12 studies, 4432 participants). Pharmacotherapy versus placebo or no pharmacotherapy. Nicotine replacement therapy helped more patients to quit than placebo or no pharmacotherapy (RR 1.33, 95% CI 1.05 to 1.67; 8 studies, 3838 participants; high-certainty evidence). In absolute terms, this might equate to an additional 62 quitters per 1000 participants (95% CI 9 to 126). There was moderate-certainty evidence, limited by imprecision (as CI encompassed the possibility of no difference), that varenicline helped more hospitalised patients to quit than placebo or no pharmacotherapy (RR 1.29, 95% CI 0.96 to 1.75; 4 studies, 829 participants). Evidence for bupropion was low-certainty; the point estimate indicated a modest benefit at best, but CIs were wide and incorporated clinically significant harm and clinically significant benefit (RR 1.11, 95% CI 0.86 to 1.43, 4 studies, 872 participants). Hospital-only intervention versus intervention that continues after hospital discharge. Patients offered both smoking cessation counselling and pharmacotherapy after discharge had higher quit rates than patients offered counselling in hospital but not offered post-discharge support (RR 1.23, 95% CI 1.09 to 1.38; 7 studies, 5610 participants; high-certainty evidence). In absolute terms, this might equate to an additional 34 quitters per 1000 participants (95% CI 13 to 55). Post-discharge interventions offering real-time counselling without pharmacotherapy (RR 1.23, 95% CI 0.95 to 1.60, 8 studies, 2299 participants; low certainty-evidence) and those offering unscheduled counselling without pharmacotherapy (RR 0.97, 95% CI 0.83 to 1.14; 2 studies, 1598 participants; very low-certainty evidence) may have little to no effect on quit rates compared to control. Telephone quitlines versus control. To provide post-discharge support, hospitals may refer patients to community-based telephone quitlines. Both comparisons relating to these interventions had wide CIs encompassing both possible harm and possible benefit, and were judged to be of very low certainty due to imprecision, inconsistency, and risk of bias (post-discharge telephone counselling versus quitline referral: RR 1.23, 95% CI 1.00 to 1.51; 3 studies, 3260 participants; quitline referral versus control: RR 1.17, 95% CI 0.70 to 1.96; 2 studies, 1870 participants). Authors' conclusions: Offering hospitalised patients smoking cessation counselling beginning in hospital and continuing for over one month after discharge increases quit rates, compared to no hospital intervention. Counselling provided only in hospital, without post-discharge support, may have a modest impact on quit rates, but evidence is less certain. When all patients receive counselling in the hospital, high-certainty evidence indicates that providing both counselling and pharmacotherapy after discharge increases quit rates compared to no post-discharge intervention. Starting nicotine replacement or varenicline in hospitalised patients helps more patients to quit smoking than a placebo or no medication, though evidence for varenicline is only moderate-certainty due to imprecision. There is less evidence of benefit for bupropion in this setting. Some of our evidence was limited by imprecision (bupropion versus placebo and varenicline versus placebo), risk of bias, and inconsistency related to heterogeneity. Future research is needed to identify effective strategies to implement, disseminate, and sustain interventions, and to ensure cessation counselling and pharmacotherapy initiated in the hospital is sustained after discharge.

Original publication

DOI

10.1002/14651858.CD001837.pub4

Type

Journal article

Journal

Cochrane Database of Systematic Reviews

Publication Date

21/05/2024

Volume

2024