Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: To develop a clinical prediction model to risk stratify children admitted to PICUs in locations with limited resources, and compare performance of the model to nine existing pediatric severity scores. DESIGN: Retrospective, single-center, cohort study. SETTING: PICU of a pediatric hospital in Siem Reap, northern Cambodia. PATIENTS: Children between 28 days and 16 years old admitted nonelectively to the PICU. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Clinical and laboratory data recorded at the time of PICU admission were collected. The primary outcome was death during PICU admission. One thousand five hundred fifty consecutive non-elective PICU admissions were included, of which 97 died (6.3%). Most existing severity scores achieved comparable discrimination (area under the receiver operating characteristic curves [AUCs], 0.71-0.76) but only three scores demonstrated moderate diagnostic utility for triaging admissions into high- and low-risk groups (positive likelihood ratios [PLRs], 2.65-2.97 and negative likelihood ratios [NLRs], 0.40-0.46). The newly derived model outperformed all existing severity scores (AUC, 0.84; 95% CI, 0.80-0.88; p < 0.001). Using one particular threshold, the model classified 13.0% of admissions as high risk, among which probability of mortality was almost ten-fold greater than admissions triaged as low-risk (PLR, 5.75; 95% CI, 4.57-7.23 and NLR, 0.47; 95% CI, 0.37-0.59). Decision curve analyses indicated that the model would be superior to all existing severity scores and could provide utility across the range of clinically plausible decision thresholds. CONCLUSIONS: Existing pediatric severity scores have limited potential as risk stratification tools in resource-constrained PICUs. If validated, our prediction model would be a readily implementable mechanism to support triage of critically ill children at admission to PICU and could provide value across a variety of contexts where resource prioritization is important.

Original publication

DOI

10.1097/PCC.0000000000003394

Type

Journal article

Journal

Pediatric Critical Care Medicine

Publication Date

01/03/2024

Volume

25

Pages

189 - 200