Pharmacological and electronic cigarette interventions for smoking cessation in adults: component network meta-analyses
Lindson N., Theodoulou A., Ordóñez-Mena JM., Fanshawe TR., Sutton AJ., Livingstone-Banks J., Hajizadeh A., Zhu S., Aveyard P., Freeman SC., Agrawal S., Hartmann-Boyce J.
Background: Tobacco smoking is the leading preventable cause of death and disease worldwide. Stopping smoking can reduce this harm and many people would like to stop. There are a number of medicines licenced to help people quit globally, and e-cigarettes are used for this purpose in many countries. Typically treatments work by reducing cravings to smoke, thus aiding initial abstinence and preventing relapse. More information on comparative effects of these treatments is needed to inform treatment decisions and policies. Objectives: To investigate the comparative benefits, harms and tolerability of different smoking cessation pharmacotherapies and e-cigarettes, when used to help people stop smoking tobacco. Search methods: We identified studies from recent updates of Cochrane Reviews investigating our interventions of interest. We updated the searches for each review using the Cochrane Tobacco Addiction Group (TAG) specialised register to 29 April 2022. Selection criteria: We included randomised controlled trials (RCTs), cluster-RCTs and factorial RCTs, which measured smoking cessation at six months or longer, recruited adults who smoked combustible cigarettes at enrolment (excluding pregnant people) and randomised them to approved pharmacotherapies and technologies used for smoking cessation worldwide (varenicline, cytisine, nortriptyline, bupropion, nicotine replacement therapy (NRT) and e-cigarettes) versus no pharmacological intervention, placebo (control) or another approved pharmacotherapy. Studies providing co-interventions (e.g. behavioural support) were eligible if the co-intervention was provided equally to study arms. Data collection and analysis: We followed standard Cochrane methods for screening, data extraction and risk of bias (RoB) assessment (using the RoB 1 tool). Primary outcome measures were smoking cessation at six months or longer, and the number of people reporting serious adverse events (SAEs). We also measured withdrawals due to treatment. We used Bayesian component network meta-analyses (cNMA) to examine intervention type, delivery mode, dose, duration, timing in relation to quit day and tapering of nicotine dose, using odds ratios (OR) and 95% credibility intervals (CrIs). We calculated an effect estimate for combination NRT using an additive model. We evaluated the influence of population and study characteristics, provision of behavioural support and control arm rates using meta-regression. We evaluated certainty using GRADE. Main results: Of our 332 eligible RCTs, 319 (835 study arms, 157,179 participants) provided sufficient data to be included in our cNMA. Of these, we judged 51 to be at low risk of bias overall, 104 at high risk and 164 at unclear risk, and 118 reported pharmaceutical or e-cigarette/tobacco industry funding. Removing studies at high risk of bias did not change our interpretation of the results. Benefits. We found high-certainty evidence that nicotine e-cigarettes (OR 2.37, 95% CrI 1.73 to 3.24; 16 RCTs, 3828 participants), varenicline (OR 2.33, 95% CrI 2.02 to 2.68; 67 RCTs, 16,430 participants) and cytisine (OR 2.21, 95% CrI 1.66 to 2.97; 7 RCTs, 3848 participants) were associated with higher quit rates than control. In absolute terms, this might lead to an additional eight (95% CrI 4 to 13), eight (95% CrI 6 to 10) and seven additional quitters per 100 (95% CrI 4 to 12), respectively. These interventions appeared to be more effective than the other interventions apart from combination NRT (patch and a fast-acting form of NRT), which had a lower point estimate (calculated additive effect) but overlapping 95% CrIs (OR 1.93, 95% CrI 1.61 to 2.34). There was also high-certainty evidence that nicotine patch alone (OR 1.37, 95% CrI 1.20 to 1.56; 105 RCTs, 37,319 participants), fast-acting NRT alone (OR 1.41, 95% CrI 1.29 to 1.55; 120 RCTs, 31,756 participants) and bupropion (OR 1.43, 95% CrI 1.26 to 1.62; 71 RCTs, 14,759 participants) were more effective than control, resulting in two (95% CrI 1 to 3), three (95% CrI 2 to 3) and three (95% CrI 2 to 4) additional quitters per 100 respectively. Nortriptyline is probably associated with higher quit rates than control (OR 1.35, 95% CrI 1.02 to 1.81; 10 RCTs, 1290 participants; moderate-certainty evidence), resulting in two (CrI 0 to 5) additional quitters per 100. Non-nicotine/placebo e-cigarettes (OR 1.16, 95% CrI 0.74 to 1.80; 8 RCTs, 1094 participants; low-certainty evidence), equating to one additional quitter (95% CrI -2 to 5), had point estimates favouring the intervention over control, but CrIs encompassed the potential for no difference and harm. There was low-certainty evidence that tapering the dose of NRT prior to stopping treatment may improve effectiveness; however, 95% CrIs also incorporated the null (OR 1.14, 95% CrI 1.00 to 1.29; 111 RCTs, 33,156 participants). This might lead to an additional one quitter per 100 (95% CrI 0 to 2). Harms. There were insufficient data to include nortriptyline and non-nicotine EC in the final SAE model. Overall rates of SAEs for the remaining treatments were low (average 3%). Low-certainty evidence did not show a clear difference in the number of people reporting SAEs for nicotine e-cigarettes, varenicline, cytisine or NRT when compared to no pharmacotherapy/e-cigarettes or placebo. Bupropion may slightly increase rates of SAEs, although the CrI also incorporated no difference (moderate certainty). In absolute terms bupropion may cause one more person in 100 to experience an SAE (95% CrI 0 to 2). Authors' conclusions: The most effective interventions were nicotine e-cigarettes, varenicline and cytisine (all high certainty), as well as combination NRT (additive effect, certainty not rated). There was also high-certainty evidence for the effectiveness of nicotine patch, fast-acting NRT and bupropion. Less certain evidence of benefit was present for nortriptyline (moderate certainty), non-nicotine e-cigarettes and tapering of nicotine dose (both low certainty). There was moderate-certainty evidence that bupropion may slightly increase the frequency of SAEs, although there was also the possibility of no increased risk. There was no clear evidence that any other tested interventions increased SAEs. Overall, SAE data were sparse with very low numbers of SAEs, and so further evidence may change our interpretation and certainty. Future studies should report SAEs to strengthen certainty in this outcome. More head-to-head comparisons of the most effective interventions are needed, as are tests of combinations of these. Future work should unify data from behavioural and pharmacological interventions to inform approaches to combined support for smoking cessation.