Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The tools of artificial intelligence (AI) have enormous potential to enhance activities in pharmacovigilance. Pharmacovigilance experts need not be AI experts, but they should know enough about AI to explore the possibilities of collaboration with those who are. Modern concepts of AI date from Alan Turing's work, especially his paper on "the imitation game", in the late 1940s and early 1950s. Its scope today includes computational skills, including the formulation of mathematical proofs; visual perception, including facial recognition and virtual reality; decision making by expert systems; aspects of language, such as language processing, speech recognition, creative composition, and translation; and combinations of these, e.g. in self-driving vehicles. Machines can be programmed with the ability to learn, using neural networks that mimic cognitive actions of the human brain, leading to deep structural learning. Limitations of AI include difficulties with language, arising from the need to understand context and interpret ambiguities, which particularly affect translation, and inadequacies of databases, requiring careful preparation and curation. New techniques may cause unforeseen difficulties via unexpected malfunctioning. Relevant terms and concepts include different types of machine learning, neural networks, natural language programming, ontologies, and expert systems. Adoption of the tools of AI in pharmacovigilance has been slow. Machine learning, in conjunction with natural language processing and data mining, to study adverse drug reactions in databases such as those found in electronic health records, claims databases, and social media, has the potential to enhance the characterization of known adverse effects and reactions and detect new signals.

Original publication




Journal article


Drug safety

Publication Date





407 - 418


Centre for Evidence-Based Medicine, Nuffield Department of Primary Care Health Sciences, Oxford, UK.


Humans, Algorithms, Artificial Intelligence, Data Mining, Pharmacovigilance, Drug-Related Side Effects and Adverse Reactions, Machine Learning