Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: In locations where few people have received COVID-19 vaccines, health systems remain vulnerable to surges in SARS-CoV-2 infections. Tools to identify patients suitable for community-based management are urgently needed. METHODS: We prospectively recruited adults presenting to two hospitals in India with moderate symptoms of laboratory-confirmed COVID-19 in order to develop and validate a clinical prediction model to rule-out progression to supplemental oxygen requirement. The primary outcome was defined as any of the following: SpO2 < 94%; respiratory rate > 30 bpm; SpO2/FiO2 < 400; or death. We specified a priori that each model would contain three clinical parameters (age, sex and SpO2) and one of seven shortlisted biochemical biomarkers measurable using commercially-available rapid tests (CRP, D-dimer, IL-6, NLR, PCT, sTREM-1 or suPAR), to ensure the models would be suitable for resource-limited settings. We evaluated discrimination, calibration and clinical utility of the models in a held-out temporal external validation cohort. RESULTS: 426 participants were recruited, of whom 89 (21.0%) met the primary outcome. 257 participants comprised the development cohort and 166 comprised the validation cohort. The three models containing NLR, suPAR or IL-6 demonstrated promising discrimination (c-statistics: 0.72 to 0.74) and calibration (calibration slopes: 1.01 to 1.05) in the validation cohort, and provided greater utility than a model containing the clinical parameters alone. CONCLUSIONS: We present three clinical prediction models that could help clinicians identify patients with moderate COVID-19 suitable for community-based management. The models are readily implementable and of particular relevance for locations with limited resources.

Original publication

DOI

10.1093/cid/ciac224

Type

Journal article

Journal

Clin Infect Dis

Publication Date

21/03/2022

Keywords

COVID-19, LMIC, low- and middle-income country, prognostic model, triage