Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2014 The Cochrane Collaboration. Background: There are at least three reasons to believe antidepressants might help in smoking cessation. Firstly, nicotine withdrawal may produce depressive symptoms or precipitate a major depressive episode and antidepressants may relieve these. Secondly, nicotine may have antidepressant effects that maintain smoking, and antidepressants may substitute for this effect. Finally, some antidepressants may have a specific effect on neural pathways (e.g. inhibiting monoamine oxidase) or receptors (e.g. blockade of nicotinic-cholinergic receptors) underlying nicotine addiction. Objectives: The aim of this review is to assess the effect and safety of antidepressant medications to aid long-term smoking cessation. The medications include bupropion; doxepin; fluoxetine; imipramine; lazabemide; moclobemide; nortriptyline; paroxetine; S-Adenosyl-L-Methionine (SAMe); selegiline; sertraline; St. John's wort; tryptophan; venlafaxine; and zimeledine. Search methods: We searched the Cochrane Tobacco Addiction Group Specialised Register which includes reports of trials indexed in the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and PsycINFO, and other reviews and meeting abstracts, in July 2013. Selection criteria: We considered randomized trials comparing antidepressant medications to placebo or an alternative pharmacotherapy for smoking cessation. We also included trials comparing different doses, using pharmacotherapy to prevent relapse or re-initiate smoking cessation or to help smokers reduce cigarette consumption. We excluded trials with less than six months follow-up. Data collection and analysis: We extracted data and assessed risk of bias using standard methodological procedures expected by the Cochrane Collaboration. The main outcome measure was abstinence from smoking after at least six months follow-up in patients smoking at baseline, expressed as a risk ratio (RR). We used the most rigorous definition of abstinence available in each trial, and biochemically validated rates if available. Where appropriate, we performed meta-analysis using a fixed-effect model. Main results: Twenty-four new trials were identified since the 2009 update, bringing the total number of included trials to 90. There were 65 trials of bupropion and ten trials of nortriptyline, with the majority at low or unclear risk of bias. There was high quality evidence that, when used as the sole pharmacotherapy, bupropion significantly increased long-term cessation (44 trials, N = 13,728, risk ratio [RR] 1.62, 95% confidence interval [CI] 1.49 to 1.76). There was moderate quality evidence, limited by a relatively small number of trials and participants, that nortriptyline also significantly increased long-term cessation when used as the sole pharmacotherapy (six trials, N = 975, RR 2.03, 95% CI 1.48 to 2.78). There is insufficient evidence that adding bupropion (12 trials, N = 3487, RR 1.9, 95% CI 0.94 to 1.51) or nortriptyline (4 trials, N = 1644, RR 1.21, 95% CI 0.94 to 1.55) to nicotine replacement therapy (NRT) provides an additional long-term benefit. Based on a limited amount of data from direct comparisons, bupropion and nortriptyline appear to be equally effective and of similar efficacy to NRT (bupropion versus nortriptyline 3 trials, N = 417, RR 1.30, 95% CI 0.93 to 1.82; bupropion versus NRT 8 trials, N = 4096, RR 0.96, 95% CI 0.85 to 1.09; no direct comparisons between nortriptyline and NRT). Pooled results from four trials comparing bupropion to varenicline showed significantly lower quitting with bupropion than with varenicline (N = 1810, RR 0.68, 95% CI 0.56 to 0.83). Meta-analyses did not detect a significant increase in the rate of serious adverse events amongst participants taking bupropion, though the confidence interval only narrowly missed statistical significance (33 trials, N = 9631, RR 1.30, 95% CI 1.00 to 1.69). There is a risk of about 1 in 1000 of seizures associated with bupropion use. Bupropion has been associated with suicide risk, but whether this is causal is unclear. Nortriptyline has the potential for serious side-effects, but none have been seen in the few small trials for smoking cessation. There was no evidence of a significant effect for selective serotonin reuptake inhibitors on their own (RR 0.93, 95% CI 0.71 to 1.22, N = 1594; 2 trials fluoxetine, 1 paroxetine, 1 sertraline) or as an adjunct to NRT (3 trials of fluoxetine, N = 466, RR 0.70, 95% CI 0.64 to 1.82). Significant effects were also not detected for monoamine oxidase inhibitors (RR 1.29, 95% CI 0.93 to 1.79, N = 827; 1 trial moclobemide, 5 selegiline), the atypical antidepressant venlafaxine (1 trial, N = 147, RR 1.22, 95% CI 0.64 to 2.32), the herbal therapy St John's wort (hypericum) (2 trials, N = 261, RR 0.81, 95% CI 0.26 to 2.53), or the dietary supplement SAMe (1 trial, N = 120, RR 0.70, 95% CI 0.24 to 2.07). Authors' conclusions: The antidepressants bupropion and nortriptyline aid long-term smoking cessation. Adverse events with either medication appear to rarely be serious or lead to stopping medication. Evidence suggests that the mode of action of bupropion and nortriptyline is independent of their antidepressant effect and that they are of similar efficacy to nicotine replacement. Evidence also suggests that bupropion is less effective than varenicline, but further research is needed to confirm this finding. Evidence suggests that neither selective serotonin reuptake inhibitors (e.g. fluoxetine) nor monoamine oxidase inhibitors aid cessation.

Original publication

DOI

10.1002/14651858.CD000031.pub4

Type

Journal article

Journal

Cochrane Database of Systematic Reviews

Publication Date

08/01/2014

Volume

2014