Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Assessment of suicide risk in individuals who have self-harmed is common in emergency departments, but is often based on tools developed for other purposes. OBJECTIVE: We developed and validated a predictive model for suicide following self-harm. METHODS: We used data from Swedish population-based registers. A cohort of 53 172 individuals aged 10+ years, with healthcare episodes of self-harm, was split into development (37 523 individuals, of whom 391 died from suicide within 12 months) and validation (15 649 individuals, 178 suicides within 12 months) samples. We fitted a multivariable accelerated failure time model for the association between risk factors and time to suicide. The final model contains 11 factors: age, sex, and variables related to substance misuse, mental health and treatment, and history of self-harm. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis guidelines were followed for the design and reporting of this work. FINDINGS: An 11-item risk model to predict suicide was developed using sociodemographic and clinical risk factors, and showed good discrimination (c-index 0.77, 95% CI 0.75 to 0.78) and calibration in external validation. For risk of suicide within 12 months, using a 1% cut-off, sensitivity was 82% (75% to 87%) and specificity was 54% (53% to 55%). A web-based risk calculator is available (Oxford Suicide Assessment Tool for Self-harm or OxSATS). CONCLUSIONS: OxSATS accurately predicts 12-month risk of suicide. Further validations and linkage to effective interventions are required to examine clinical utility. CLINICAL IMPLICATIONS: Using a clinical prediction score may assist clinical decision-making and resource allocation.

Original publication

DOI

10.1136/bmjment-2023-300673

Type

Journal article

Journal

BMJ mental health

Publication Date

01/05/2023

Volume

26