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Can | pool relative risk data that are given for different definitions of high vs low ?

Kathy Taylor
I'd like to thank my colleague, Dr Thomas Fanshawe, for his help in writing this blog post.

In this blog post I’'m going to look at another problem that can arise in systematic reviews of
prognostic studies. In post D1, | showed how to rescale hazard ratios (HRs), relative risks (RRs) and
odds ratios (ORs) that express the change in risk associated with a specific change in a predictor
variable on a continuous scale. | gave two examples of studies which reported HRs for cardiovascular
mortality associated with increases in 24-hour systolic blood pressure variability and | rescaled the
HR from the first study from an increase of 15.6mmHg (1-SD) of blood pressure variability to an
increase of 5mmHg (HR 1.01, 95% Cl 0.94 to 1.03), so that the data could be pooled with the HR that
was reported for a 5mmHg increase by the second study (HR 1.17, 95% Cl 0.64 to 2.13). Then in post
D4, | showed a log-linear dose response trend estimation method that can be employed to deal with
the situation of data reported for multiple categories of the exposure variable, instead of for a

continuous variable. The trend estimation method uses relative risk data for all the categories.

This blog post is also about rescaling in the context of varied categorical risk data, but in this case,
only two categories are considered, for ‘high vs low’ values of the predictor, and this many not
necessarily encompass data for all categories. These relative risks could be reported for the top third
vs the bottom third or the top quartile vs the bottom quartile. This also involves assuming a log-
linear association between the predictor and the relative risk of the disease and a method to pooling

data was used in a meta-analysis by Danesh et al.

The authors set the logRR of the risk of disease among individuals in the top third vs those in the
bottom third as the desired common logRR. | will refer to this logRR as logRR3. | will also refer to the

logRR for quartiles as logRR4 and so on. The authors estimated:

logRR3 = 2.18 x logRR4
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https://www.ncbi.nlm.nih.gov/pubmed/20212270
https://www.ncbi.nlm.nih.gov/pubmed/14654744
https://pubmed.ncbi.nlm.nih.gov/9600484/
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The authors also pooled data expressed on a continuous scale and estimated:
logRR3 = 2.18 X logRR for a 1-SD difference in the predictor

The standard error of logRR3 may be calculated from its confidence interval (Cl) as | have shown
previously in post D3 as
(upper CI — lower CI)

3.92
for a 95% confidence interval where upperCl is the upper limit and lowerCl is the lower limit of the

SE =

Cl of loggRR3. Bear in mind that the scaling factors also apply to the Cl. For example, if a study
reports logRR4 with a Cl, then
_ 218 o (upper CI — lower CI)
2.54 3.92

where upperCl is the upper limit and lowerCl is the lower limit of the Cl of loggRRA4.
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Here’s a tip....

Applying another trend estimation
approach can help you pool relative

risks for high vs low categories
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Where did the equations come from?

(You can skip this if you are only interested in carrying out the calculations)

For analysis the values of the predictor need to be normally distributed and this may require the

use of the transform. The authors log-transformed C-relative protein values.
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Figure 1. Tertiles
The authors considered tertiles on a standardised normal distribution (with mean=0 and SD=1,
Figure 1). The Z value taken from the standard normal distribution table for the area in the upper
tail equal to 1/3 is between 0.43 and 0.44 (Figure 2, shaded area is 1-1/3=2/3=0.6667).
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Figure 2. Table of proportions of the standard Normal distribution

A more precise value of the Z value is 0.431 and this can be obtained in R using

gnorm(2/3).

The average values of the upper and lower tertiles is obtained by simulating a normal distribution
and calculating basic description statistics, including the average, of the area beyond 0.431. The

relevant R code is
x<-rnorm(1000000)
summary (x [x>gnorm(2/3) 1)



Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4307 0.6736 0.9663 1.0902 1.3836 4.9406

The difference between the average predictor in the lower and upper tertiles is 2 x 1.0902 = 2.18

(Figure 1). This represents the standardised predictor change for tertiles.

A linear relationship between X and Y can be expressed as Y = A + BX where A and B are
constants; A is the intercept and B is the slope. Assuming a log linear association between the risk
of disease and the baseline value of a predictor variable over the midrange of baseline values (we
assume a zero intercept), we can say that
logrisk = A+ B X predictor
logrisk inT3 = A+ B X mean predictor value of T3
logrisk inT1 = A+ B X mean predictor value of T1

logrisk inT3 —logrisk inT1 = B X predictor change (since logA-logB=logA/B) i.e.
logRR3 = B X predictor change (equation 1)

logRR3
2.18

logRR3 = B X 218 =B = (equation 2 and Figure 1)
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Figure 3. Quartiles

Considering quartiles (Figure 3), the Z score for the area in the upper tail equal to 1/4 is 0.674 and
the average value of the upper tertile is 1.27. The difference between the average predictor in the

lower and upper tertiles is therefore 2.54. These values are calculated in R using
gnorm (3/4)
summary (x [x>gqnorm(3/4) 1)

Using equation 1 for quartiles and substituting for B using equation 2

2.5
logRR4 = B x 254 =~

o logRR3
X
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Rearranging
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Similarly, considering quintiles, the Z score for the area in the upper tail equal to 1/5 is 0.841 and
difference between the average value in the upper quintile is 1.40 x 2 = 2.80. These are calculated
in R by

gnorm (4/5)

summary (x [x>gqnorm(4/5) 1)

2.18

logRR5 = B x 2.80 = X logRR3

Rearranging

logRR3 = 2'18><l RR3
OgRRs = 5789 = *09

Recall that the Z score is calculated
xX—Hu
SD
and so the Z score is measured in terms of SDs from the mean. For the standard normal distribution

7 =

the SD is equal to 1. Therefore, the change in 2.18 units is in fact 2.18 SDs and a change in 2.80 units
is 2.80 SDs. Using equation 1 for a change in 1-SD quartiles and substituting for B using equation 2

logRR3
2.18

logRR for a 1SD difference = BX1 =B =

Rearranging
logRR3 = 2.18 X logRR for a 1-SD difference

Dr Kathy Taylor teaches data extraction in Meta-analysis,
https://www.conted.ox.ac.uk/courses/meta-analysis</link> This is a short course that is also

available as part of our MSc in Evidence-Based Health Care
https://www.conted.ox.ac.uk/about/msc-in-evidence-based-health-care, MSc in Medical
Statistics

https://www.conted.ox.ac.uk/about/msc-in-ebhc-medical-statistics, and MSc in Systematic

Reviews

https://www.conted.ox.ac.uk/about/msc-in-ebhc-systematic-reviews

Follow updates on this blog and related news on Twitter @dataextips
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