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Tip for data extraction in meta-analysis – D8 

 

 
 

Can I pool relative risk data that are given for different definitions of high vs low ? 

Kathy Taylor 

 

I’d like to thank my colleague, Dr Thomas Fanshawe, for his help in writing this blog post.   

 

In this blog post I’m going to look at another problem that can arise in systematic reviews of 

prognostic studies. In post D1, I showed how to rescale hazard ratios (HRs), relative risks (RRs) and 

odds ratios (ORs) that express the change in risk associated with a specific change in a predictor 

variable on a continuous scale. I gave two examples of studies which reported HRs for cardiovascular 

mortality associated with increases in 24-hour systolic blood pressure variability and I rescaled the 

HR from the first study from an increase of 15.6mmHg (1-SD) of blood pressure variability to an 

increase of 5mmHg (HR 1.01, 95% CI 0.94 to 1.03), so that the data could be pooled with the HR that 

was reported for a 5mmHg increase by the second study (HR 1.17, 95% CI 0.64 to 2.13). Then in post 

D4, I showed a log-linear dose response trend estimation method that can be employed to deal with 

the situation of data reported for multiple categories of the exposure variable, instead of for a 

continuous variable. The trend estimation method uses relative risk data for all the categories.    

 

This blog post is also about rescaling in the context of varied categorical risk data, but in this case, 

only two categories are considered, for ‘high vs low’ values of the predictor, and this many not 

necessarily encompass data for all categories. These relative risks could be reported for the top third 

vs the bottom third or the top quartile vs the bottom quartile. This also involves assuming a log-

linear association between the predictor and the relative risk of the disease and a method to pooling 

data was used in a meta-analysis by Danesh et al.  

 

The authors set the logRR of the risk of disease among individuals in the top third vs those in the 

bottom third as the desired common logRR. I will refer to this logRR as logRR3. I will also refer to the 

logRR for quartiles as logRR4 and so on. The authors estimated: 

𝑙𝑜𝑔𝑅𝑅3 =
2.18

2.54
× 𝑙𝑜𝑔𝑅𝑅4 

https://www.ncbi.nlm.nih.gov/pubmed/20212270
https://www.ncbi.nlm.nih.gov/pubmed/14654744
https://pubmed.ncbi.nlm.nih.gov/9600484/


2 
 

𝑙𝑜𝑔𝑅𝑅3 =
2.18

2.80
 × 𝑙𝑜𝑔𝑅𝑅5 

 

The authors also pooled data expressed on a continuous scale and estimated: 

  

𝑙𝑜𝑔𝑅𝑅3 = 2.18 × 𝑙𝑜𝑔𝑅𝑅  for a 1-SD difference in the predictor 

 

The standard error of logRR3 may be calculated from its confidence interval (CI) as I have shown 

previously in post D3 as 

𝑆𝐸 =  
(𝑢𝑝𝑝𝑒𝑟 𝐶𝐼 −  𝑙𝑜𝑤𝑒𝑟 𝐶𝐼)

3.92
 

for a 95% confidence interval where upperCI is the upper limit and lowerCI is the lower limit of the 

CI of loggRR3. Bear in mind that the scaling factors also apply to the CI. For example, if a study 

reports logRR4 with a CI, then  

𝑆𝐸 =
2.18

2.54
 ×  

(𝑢𝑝𝑝𝑒𝑟 𝐶𝐼 −  𝑙𝑜𝑤𝑒𝑟 𝐶𝐼)

3.92
 

 

where upperCI is the upper limit and lowerCI is the lower limit of the CI of loggRR4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where did the equations come from?   

(You can skip this if you are only interested in carrying out the calculations) 

 

For analysis the values of the predictor need to be normally distributed and this may require the  

use of the transform. The authors log-transformed C-relative protein values. 

Here’s a tip…. 

 

Applying another trend estimation 

approach can help you pool relative 

risks for high vs low categories 
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Figure 1. Tertiles 

The authors considered tertiles on a standardised normal distribution (with mean=0 and SD=1, 

Figure 1). The Z value taken from the standard normal distribution table for the area in the upper 

tail equal to 1/3 is between 0.43 and 0.44 (Figure 2, shaded area is 1-1/3=2/3=0.6667).  

 

Figure 2. Table of proportions of the standard Normal distribution 

 

A more precise value of the Z value is 0.431 and this can be obtained in R using   

qnorm(2/3).  

The average values of the upper and lower tertiles is obtained by simulating a normal distribution 

and calculating basic description statistics, including the average, of the area beyond 0.431. The 

relevant R code is  

 x<-rnorm(1000000) 

 summary(x[x>qnorm(2/3)]) 
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   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

 0.4307  0.6736  0.9663  1.0902  1.3836  4.9406 

 

The difference between the average predictor in the lower and upper tertiles is 2 x 1.0902 = 2.18 

(Figure 1). This represents the standardised predictor change for tertiles.  

 

A linear relationship between X and Y can be expressed as 𝑌 =  𝐴 + 𝐵𝑋 where A and B are 

constants; A is the intercept and B is the slope. Assuming a log linear association between the risk 

of disease and the baseline value of a predictor variable over the midrange of baseline values (we 

assume a zero intercept), we can say that  

𝑙𝑜𝑔𝑟𝑖𝑠𝑘 = 𝐴 +  𝐵 × 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟      

𝑙𝑜𝑔𝑟𝑖𝑠𝑘 𝑖𝑛 𝑇3 = 𝐴 +  𝐵 × 𝑚𝑒𝑎𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑇3 

𝑙𝑜𝑔𝑟𝑖𝑠𝑘 𝑖𝑛 𝑇1 = 𝐴 +  𝐵 × 𝑚𝑒𝑎𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑇1 

     

𝑙𝑜𝑔𝑟𝑖𝑠𝑘 𝑖𝑛 𝑇3 − log 𝑟𝑖𝑠𝑘 𝑖𝑛 𝑇1  = 𝐵 × 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑐ℎ𝑎𝑛𝑔𝑒     (since logA-logB=logA/B) i.e.  

𝑙𝑜𝑔𝑅𝑅3 =  𝐵 × 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑐ℎ𝑎𝑛𝑔𝑒        (equation 1) 

 

𝑙𝑜𝑔𝑅𝑅3 =  𝐵 ×  2.18 ⟹ 𝐵 =
𝑙𝑜𝑔𝑅𝑅3

2.18
      (equation 2 and Figure 1) 

 

 

Figure 3. Quartiles 

 

Considering quartiles (Figure 3), the Z score for the area in the upper tail equal to 1/4 is 0.674 and 

the average value of the upper tertile is 1.27. The difference between the average predictor in the 

lower and upper tertiles is therefore 2.54. These values are calculated in R using 

qnorm(3/4) 

summary(x[x>qnorm(3/4)]) 

 

Using equation 1 for quartiles and substituting for B using equation 2 

𝑙𝑜𝑔𝑅𝑅4 =  𝐵 × 2.54 =
 2.54 

2.18
× 𝑙𝑜𝑔𝑅𝑅3 

Rearranging  
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𝑙𝑜𝑔𝑅𝑅3 =  
 2.18

2.54
× 𝑙𝑜𝑔𝑅𝑅4 

Similarly, considering quintiles, the Z score for the area in the upper tail equal to 1/5 is 0.841 and 

difference between the average value in the upper quintile is 1.40 x 2 = 2.80. These are calculated 

in R by   

qnorm(4/5) 

summary(x[x>qnorm(4/5)]) 

 

𝑙𝑜𝑔𝑅𝑅5 =  𝐵 × 2.80 =
 2.80 

2.18
× 𝑙𝑜𝑔𝑅𝑅3 

Rearranging  

𝑙𝑜𝑔𝑅𝑅3 =  
 2.18

2.80
× 𝑙𝑜𝑔𝑅𝑅3 

 

 

Recall that the Z score is calculated  

𝑍 =
𝑥 − 𝜇

𝑆𝐷
 

and so the Z score is measured in terms of SDs from the mean. For the standard normal distribution 

the SD is equal to 1. Therefore, the change in 2.18 units is in fact 2.18 SDs and a change in 2.80 units 

is 2.80 SDs. Using equation 1 for a change in 1-SD quartiles and substituting for B using equation 2 

 

𝑙𝑜𝑔𝑅𝑅 𝑓𝑜𝑟 𝑎 1𝑆𝐷 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝐵 × 1 = 𝐵 =
𝑙𝑜𝑔𝑅𝑅3

2.18
 

Rearranging 

𝑙𝑜𝑔𝑅𝑅3 = 2.18 × 𝑙𝑜𝑔𝑅𝑅  for a 1-SD difference  

 

Dr Kathy Taylor teaches data extraction in Meta-analysis, 

https://www.conted.ox.ac.uk/courses/meta-analysis</link> This is a short course that is also 

available as part of our MSc in Evidence-Based Health Care  

https://www.conted.ox.ac.uk/about/msc-in-evidence-based-health-care, MSc in Medical 

Statistics  

https://www.conted.ox.ac.uk/about/msc-in-ebhc-medical-statistics, and MSc in Systematic 

Reviews  

https://www.conted.ox.ac.uk/about/msc-in-ebhc-systematic-reviews 

 

Follow updates on this blog and related news on Twitter @dataextips 

 

https://www.conted.ox.ac.uk/courses/meta-analysis%3c/link
https://www.conted.ox.ac.uk/about/msc-in-evidence-based-health-care
https://www.conted.ox.ac.uk/about/msc-in-ebhc-medical-statistics
https://www.conted.ox.ac.uk/about/msc-in-ebhc-systematic-reviews

