
Tip for data extraction for meta-analysis - 25 

 
What if you’re missing a mean and only a similar statistical statistic is given? 

Kathy Taylor 

 

Previously, I highlighted a list of ways where, when extracting data for meta-analysis of 

continuous outcomes, you might find that a summary statistic that you want is missing. In this 

post I’ll give some examples of the 3rd way – only a similar summary statistic is reported, not 

the statistical measure that you want - when you have missing means. 

 

Finding a median reported 

 

You may find that instead of a mean, a median is reported. A median is a different type of 

average. The reporting of medians indicates that the distribution of outcome data is skewed. 

The median and mean are equal if the distribution of the data is perfectly symmetrical (Figure 

1). When the distribution is skewed, the mean and median will differ, and the difference 

between them will depend on the degree of skewness.   

 

Figure 1. The relative position of the mean and median depending on the data’s distribution 

 

The Cochrane Handbook (section 6.5.2.9) highlights three papers which provide equations for 

estimating means from other summary statistics.  

 

 

https://bit.ly/2OLklII
https://training.cochrane.org/handbook/current/chapter-06#section-6-5-2-9


One is the paper by Hozo et al who concluded that even with skewed data, the sample mean 

can be estimated by the median. They provided estimates for the mean based on the sample 

size and range (min and max are the bounds of the range):   

 

𝑚𝑒𝑎𝑛 ≈ 𝑚𝑒𝑑𝑖𝑎𝑛   if n ≥25  

𝑚𝑒𝑎𝑛 ≈
𝑚𝑖𝑛+2𝑚𝑒𝑑𝑖𝑎𝑛+𝑚𝑎𝑥

4
  if n<25  

The curved equal sign means ‘approximately equal’. The estimates were tested using 

simulation, and drawing samples from normal and skewed distributions. 

 

The second paper is by Bland who uses more information by providing estimates of the 

sample mean based on the median, range, sample size and interquartile range:  

𝑚𝑖𝑛(𝑛 + 3) + 2(𝑛 − 1)(𝑞1 + 𝑚𝑒𝑑𝑖𝑎𝑛 + 𝑞3) + max (𝑛 + 3)

8𝑛
 

When n is large, the equation simplifies to 

  

𝑚𝑖𝑛 + 2(𝑞1 + 𝑚𝑒𝑑𝑖𝑎𝑛 + 𝑞3) + max 

8
 

He tested his estimates on three real data sets with simulated data drawing samples from 

normal and skewed distributions.  

 

The formulae of Bland and Hozo et al both work better with small samples.   

 

The third paper is by Wan et al who provide estimates of the sample mean based on the 

median and interquartile range. This has the advantage of not being influenced by extreme 

values. 

𝑞1 + 𝑚𝑒𝑑𝑖𝑎𝑛 + 𝑞3

3
 

Using simulation, they also tested their estimates, drawing samples from normal and skewed 

distributions and found smaller relative errors compared to Bland’s approach. Wan et al also 

provide a very useful spreadsheet which you can use to calculate and compare their estimated 

means with those of Bland and Hozo et al. 

 

Finding a geometric mean reported 

 

Sometimes a geometric mean is reported. This is another type of average, which arises from 

the analysis of skewed data which have been log-transformed and then back-transformed 

(using the exponential function) when presenting results. With small samples, skewed data is 

often log-transformed, before analysis, because standard inferences on the means of skewed 

data is only acceptable for large samples. With large samples we assume that the means of 

https://www.ncbi.nlm.nih.gov/pubmed/15840177
https://pdfs.semanticscholar.org/59dd/526a4335850fcb364c92bb6f4eb879fb6e59.pdf
https://www.ncbi.nlm.nih.gov/pubmed/25524443
https://bit.ly/2ueyQem


outcome measurements are approximately normally distributed due to the central limit 

theorem.  

 

So, instead of means (which are more formally known as arithmetic means) and standard 

deviations (SD), geometric means are reported, either with confidence intervals (CIs), the 

exponential of the SD of the log-transformed values (often referred to as the tolerance factor 

or the inappropriately named as the ‘SD of the geometric mean’), or the exponential of the 

standard error (SE) of the log-transformed values. Geometric means and arithmetic means 

should not be pooled. If most of your studies report arithmetic means, you will want to 

convert geometric mean summary data to arithmetic mean summary data. Pooling is possible 

by using the conversion equations of Higgins et al. It’s a two-stage process (Figure 2) as the 

geometric mean data has to be log-transformed first. 

 

 

Figure 2. From geometric means to arithmetic means 

 

Using the following notation:  

 

g is the geometric mean of a treatment arm 

(glower to gupper ) is the confidence interval of g  

𝑒𝑠𝑧  is the incorrectly named SD of g 

𝑒𝑆𝐸𝑧  is the incorrectly named SE of g 

  

STEP 1 

 

Calculate the log-transformed measurements  (𝑧̅ 𝑎𝑛𝑑 𝑠𝑧) from the geometric mean data. 

 

𝑧̅ = 𝑙𝑛(𝑔)    and 

 

https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/normal-distributions/central-limit-theorem-definition-examples/
https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/normal-distributions/central-limit-theorem-definition-examples/
https://training.cochrane.org/handbook/current/chapter-10#section-10-5-3
https://www.ncbi.nlm.nih.gov/pubmed/18800342


𝑠𝑧 =
(ln(𝑔𝑢𝑝𝑝𝑒𝑟)−ln (𝑔𝑙𝑜𝑤𝑒𝑟))√𝑛

2𝑡
   OR 

𝑠𝑧 = 𝑙𝑛(𝑒𝑠𝑧) in cases where 𝑒𝑠𝑧 has been reported OR 

𝑠𝑧 = 𝑙𝑛(𝑒√𝑛×𝑆𝐸𝑧) 

where t is the 97.5 percentage point of the t-distribution with (n-1) degrees of freedom.  

 

STEP 2 

 

Apply the conversion equations to the log-transformed data to calculate the arithmetic mean 

summary data (�̅� 𝑎𝑛𝑑 𝑠𝑥). There are two sets of equations depending on the similarities 

between the SDs of the two treatment arms. Higgins et al recommend comparing the SDs on 

the log scale as it’s more plausible. If the SDs are different, use Method 1. If the SDs are similar, 

use Method 2.  

 

Method 1  

 

For each treatment arm, calculate 

�̅� = 𝑒𝑥𝑝 (𝑧̅ +
𝑠𝑧

2

2
) 

𝑠𝑥 = √(𝑒𝑥𝑝(𝑠𝑧
2) − 1)𝑒𝑥𝑝(2𝑧̅ + 𝑠𝑧

2) 

 

Method 2 

 

First calculate 

𝑠𝑧,𝑝𝑜𝑜𝑙𝑒𝑑 = √
(𝑛1 − 1)𝑠𝑧,1

2 + (𝑛2 − 1)𝑠𝑧,2
2

𝑛1 + 𝑛2 − 2
 

 

Then, for each treatment arm, calculate 

�̅� = 𝑒𝑥𝑝 (𝑧̅ +
𝑠𝑧,𝑝𝑜𝑜𝑙𝑒𝑑

2
) 

𝑠𝑥 = √(𝑒𝑥𝑝(𝑠𝑧,𝑝𝑜𝑜𝑙𝑒𝑑
2 ) − 1)𝑒𝑥𝑝(2𝑧̅ + 𝑠𝑧,𝑝𝑜𝑜𝑙𝑒𝑑

2 ) 

 

Higgins et al also provide equations to convert the other way, from arithmetic means to 

geometric means (Figure 3). You might want this if the majority of your included studies 

report geometric means. 



 

Figure 3. From arithmetic means to geometric means 

STEP 1 

Convert the arithmetic mean summary data to log summary data. 

�̅�   and  𝑠𝑥 are  the arithmetic mean and SD  

𝑧̅  and  𝑠𝑧 are the mean and SD of the log data  

 

If the SDs are different, use Method 1. If the SDs are similar, use Method 2. 

 

Method 1 

For each treatment arm, calculate 

𝑧̅ = 𝑙𝑛(�̅�) −
1

2
𝑙𝑛 (

𝑠𝑥
2

�̅�2
+ 1) 

𝑠𝑧 = √𝑙𝑛 (
𝑠𝑥

2

�̅�2 + 1) 

 

Method 2 

For each treatment arm, calculate 

𝑠𝑧 = √𝑙𝑛 (
𝑠𝑥

2

�̅�2 + 1) 

 

Then calculate 

𝑠𝑧,𝑝𝑜𝑜𝑙𝑒𝑑 = √
(𝑛1 − 1)𝑠𝑧,1

2 + (𝑛2 − 1)𝑠𝑧,2
2

𝑛1 + 𝑛2 − 2
 

 

Then for each treatment arm, calculate 

𝑧̅ = 𝑙𝑛(�̅�) −
1

2
𝑠𝑧,𝑝𝑜𝑜𝑙𝑒𝑑

2  

 

 



STEP 2 

 

Back-transforming (exponentiating) the log data calculates the geometric mean data.  

𝑧̅  and 𝑠𝑧 are the log data. 

g = 𝑒 �̅�  and 𝑒𝑠𝑧  are the geometric mean data. 

 

Meta-analysis can be carried out on the log scale and SD for the log values can be calculated 

using the following equation:   

𝑆𝐷 =
(𝑢𝑝𝑝𝑒𝑟 𝐶𝐼 − 𝑙𝑜𝑤𝑒𝑟 𝐶𝐼)

3.92
√𝑛 

 

Let me show you an example of converting geometric mean data to arithmetic mean data. 

 

For the review that I worked on we used these conversion equations when we extracted data 

from the study by Romero et al. They reported microalbuminuria (albumin excretion rate) at 

6 months with geometric mean (95% CI). Data for the intervention group, treated with 

Captopril, was converted from 60 (35 to 104) mg/24hr to mean (SD) of 90 (101) mg/24hr, and 

data for the untreated group was converted from 91 (58 to 141) mg/24hr was converted to 

119 (101) mg/24hr (Table).  I applied the equations from Method 1. 

 

Table. Calculating arithmetic mean data 

 

 

See below to find out where the t-value came from. Higgins et al highlight that their estimates 

are likely to be biased in small sample studies. As this study had small samples, it was removed 

as part of a sensitivity analysis.  

 

 

 

 

Captopril Untreated

n 13 13

gm 60 91

g lower 35 58

g upper 104 141

z=Ln(g) 4.09 4.51

dof 12 12

t-value 2.18 2.18

Sz 0.90 0.74

x 90.05 119.22

Sx 100.77 100.91

https://www.ncbi.nlm.nih.gov/pubmed/22189841
https://www.ncbi.nlm.nih.gov/pubmed/8462386


Other methods  

 

Other approaches of dealing with missing means highlighted by the review of Weir et al 

include the simulation-based approximate Bayesian computation (ABC) approach of Kwon 

and Reis. 

 

If a large proportion of studies have missing means, pooling is not recommended. 

 

 

 

 

 

 

 

In my next blog post I’ll give some more examples of only a similar summary statistic is 

reported, not the statistical measure that you want when you have missing SDs. 

 

Where did the equations and t-value come from? 

 

Converting geometric means to arithmetic means and the reverse 

Higgins et al derive their equations in their paper. 

 

Calculating means from medians, range and interquartile range 

Hozo et al, Bland and Wan et al also derive their equations in their respective papers. 

 

Calculating an SD from a 95% confidence interval: 

This was derived earlier and in my next blog post I will give more details. 

 

What about the t-value? 

This came from a t-distribution table (Figure 4).   

Here’s a tip… 

You can derive estimates of means from 

other reported summary statistics. 

https://www.ncbi.nlm.nih.gov/pubmed/29514597
https://www.ncbi.nlm.nih.gov/pubmed/26264850
https://www.ncbi.nlm.nih.gov/pubmed/26264850
https://www.ncbi.nlm.nih.gov/pubmed/18800342
https://www.ncbi.nlm.nih.gov/pubmed/15840177
https://pdfs.semanticscholar.org/59dd/526a4335850fcb364c92bb6f4eb879fb6e59.pdf
https://www.ncbi.nlm.nih.gov/pubmed/25524443
https://bit.ly/2IQot8Y


 

Figure 4. t-distribution table 

 

 

The first column of the table shows the degrees of freedom (dof) and the area probabilities 

(also known as percentages or p-values) are shown in the first row. As indicated in the t-

distribution curve above the table, the p-values represent the area under the t-distribution 

curve in the tail, from the t-value to infinity (shaded black) for different dofs.  

 

 

 

In the example I gave, the Captopril group had n=13 so dof=n-1=12. 

The area probability for the 97.5 percentage point of the t-distribution using the above table  

=1-0.975=0.025. The corresponding t-value is 2.179 (Figure 5). 

p values

dof

t-values



 

Figure 5. t-distribution table for dof=12 and p-value=0.025 

 

The same t-value can also be calculated using EXCEL by typing in an EXCEL cell 

=ABS(T.INV(one sided p-value, dof)). With my example this is =ABS((T.INV(0.025,12). 

 

Note that I’m using EXCEL 2016. Earlier versions use the term TINV(two-sided p-value, dof) 

i.e. TINV(0.05,12)=ABS(T.INV(0.025,12)=2.178813. 

 

Dr Kathy Taylor teaches data extraction in Meta-analysis. This is a short course that is also 

available as part of our MSc in Evidence-Based Health Care, MSc in EBHC Medical Statistics, 

and MSc in EBHC Systematic Reviews. 

 

Follow updates on this blog, related news, and to find out about other examples of 

statistics being made more broadly accessible on Twitter @dataextips 

 

https://www.conted.ox.ac.uk/courses/meta-analysis
https://www.conted.ox.ac.uk/about/msc-in-evidence-based-health-care
https://www.conted.ox.ac.uk/about/msc-in-ebhc-medical-statistics
https://www.conted.ox.ac.uk/about/msc-in-ebhc-systematic-reviews

