Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Innate immune receptors play a key role in the early recognition of invading bacterial pathogens and initiate the crucial innate immune response. The diverse macrophage receptors recognise Gram-positive and Gram-negative bacteria via conserved structures on the bacterial surface and facilitate phagocytosis and/or signalling, providing the trigger for the adaptive immune response. These receptors include scavenger receptors, C-type lectins, integrins, Toll-like receptors and siglecs. The bacterial ligands generally recognised by these receptors range from lipopolysaccharides on Gram-negative bacteria to peptidoglycan and lipoteichoic acid on Gram-positive bacteria. However, emerging evidence indicates that bacterial proteins are also important ligands; for example, surface proteins from Neisseria meningitidis have been shown to be ligands for class A scavenger receptors. In addition, a group of cytosolic receptors, the NBS-LRR proteins, have been implicated in recognition of bacterial breakdown products. It is becoming increasingly apparent that macrophage receptors can act in conjunction with one another to deliver an appropriate response. © 2006 Cambridge University Press.

Original publication

DOI

10.1017/S1462399406000159

Type

Journal article

Journal

Expert Reviews in Molecular Medicine

Publication Date

01/11/2006

Volume

8

Pages

1 - 25