Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

©The Authors. BACKGROUND: Home blood-pressure (BP) monitoring is recommended in guidelines and is increasingly popular with patients and health professionals, but the accuracy of patients' own monitors in real-world use is not known. AIM: To assess the accuracy of home BP monitors used by people with hypertension, and to investigate factors affecting accuracy. DESIGN AND SETTING: Cross-sectional, observational study in urban and suburban settings in central England. METHOD: Patients (n = 6891) on the hypertension register at seven practices in the West Midlands, England, were surveyed to ascertain whether they owned a BP monitor and wanted it tested. Monitor accuracy was compared with a calibrated reference device at 50 mmHg intervals between 0-280/300 mmHg (static pressure test); a difference from the reference monitor of +/-3 mmHg at any interval was considered a failure. Cuff performance was also assessed. Results were analysed by frequency of use, length of time in service, make and model, monitor validation status, purchase price, and any previous testing. RESULTS: In total, 251 (76%, 95% confidence interval [95% CI] = 71 to 80%) of 331 tested devices passed all tests (monitors and cuffs), and 86% (CI] = 82 to 90%) passed the static pressure test; deficiencies were, primarily, because of monitors overestimating BP. A total of 40% of testable monitors were not validated. The pass rate on the static pressure test was greater in validated monitors (96%, 95% CI = 94 to 98%) versus unvalidated monitors (64%, 95% CI = 58 to 69%), those retailing for >£10 (90%, 95% CI = 86 to 94%), those retailing for ≤£10 (66%, 95% CI = 51 to 80%), those in use for ≤4 years (95%, 95% CI = 91 to 98%), and those in use for >4 years (74%, 95% CI = 67 to 82%). All in all, 12% of cuffs failed. CONCLUSION: Patients' own BP monitor failure rate was similar to that demonstrated in studies performed in professional settings, although cuff failure was more frequent. Clinicians can be confident of the accuracy of patients' own BP monitors if the devices are validated and ≤4 years old.

Original publication

DOI

10.3399/bjgp20X710381

Type

Journal article

Journal

The British journal of general practice : the journal of the Royal College of General Practitioners

Publication Date

01/08/2020

Volume

70

Pages

e548 - e554